Mutual Contrastive Learning for Visual Representation Learning
نویسندگان
چکیده
We present a collaborative learning method called Mutual Contrastive Learning (MCL) for general visual representation learning. The core idea of MCL is to perform mutual interaction and transfer contrastive distributions among cohort networks. A crucial component Interactive (ICL). Compared with vanilla learning, ICL can aggregate cross-network embedding information maximize the lower bound between two This enables each network learn extra knowledge from others, leading better feature representations recognition tasks. emphasize that resulting conceptually simple yet empirically powerful. It generic framework be applied both supervised self-supervised Experimental results on image classification object detection show lead consistent performance gains, demonstrating guide generate representations. Code available at https://github.com/winycg/MCL.
منابع مشابه
The Effect of Visual Representation, Textual Representation, and Glossing on Second Language Vocabulary Learning
In this study, the researcher chose three different vocabulary techniques (Visual Representation, Textual Enhancement, and Glossing) and compared them with traditional method of teaching vocabulary. 80 advanced EFL Learners were assigned as four intact groups (three experimental and one control group) through using a proficiency test and a vocabulary test as a pre-test. In the visual group, stu...
متن کاملContrastive Learning for Image Captioning
Image captioning, a popular topic in computer vision, has achieved substantial progress in recent years. However, the distinctiveness of natural descriptions is often overlooked in previous work. It is closely related to the quality of captions, as distinctive captions are more likely to describe images with their unique aspects. In this work, we propose a new learning method, Contrastive Learn...
متن کاملLearning a Visual State Representation for Generative Adversarial Imitation Learning
Imitation learning is a branch of reinforcement learning that aims to train an agent to imitate an expert’s behaviour, with no explicit reward signal or knowledge of the world. Generative Adversarial Imitation Learning (GAIL) is a recent model that performs this very well, in a data-efficient manner. However, it has only been used with low-level, low-dimensional state information, with few resu...
متن کاملRepresentation Learning for Visual-Relational Knowledge Graphs
Much progress has been made towards the goal of developing ML systems that are able to recognize and interpret visual scenes. With this paper, we propose query answering in visual-relational knowledge graphs (KGs) as a novel and important reasoning problem. A visual-relational KG is a KG whose entities are associated with image data. We introduce IMAGEGRAPH, a publicly available KG with 1330 re...
متن کاملProbabilistic Visual Learning for Object Representation
We present an unsupervised technique for visual learning, which is based on density estimation in high-dimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixture-of-Gaussians model (for multimodal distributions). These probability densities are then used to fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence
سال: 2022
ISSN: ['2159-5399', '2374-3468']
DOI: https://doi.org/10.1609/aaai.v36i3.20211